Educatien with-un

Name: \qquad Date: \qquad

Motion and Time

Q1. The distance between two stations is 240 km . A train takes 4 hours to cover this distance. Calculate the speed of the train.
Ans.
\qquad
\qquad
\qquad
Q2. A simple pendulum takes 32 s to complete 20 oscillations. What is the time period of the pendulum?
Ans. \qquad
\qquad
\qquad
\qquad
Q3. Salma takes 15 minutes from her house to reach her school on a bicycle. If the bicycle has a speed of $2 \mathrm{~m} / \mathrm{s}$, calculate the distance between her house and the school.
Ans. \qquad
\qquad
\qquad
\qquad
Q4. When pendulum is said to have one complete oscillation?
Ans. \qquad
\qquad
\qquad

Educatien
 with-un

Motion and Time

Q1. The distance between two stations is 240 km . A train takes 4 hours to cover this distance. Calculate the speed of the train.
Ans. Distance between two stations $=240 \mathrm{~km}$
Time taken to cover this distance $=4$ hours
Speed $=\frac{\text { Distance }}{\text { Time Taken }}=\frac{240}{4}=60 \mathrm{~km} / \mathrm{h}$
Q2. A simple pendulum takes 32 s to complete 20 oscillations. What is the time period of the pendulum?
Ans. Number of oscillations $=20$
Total time taken to complete 20 oscillations $=32 \mathrm{~s}$

Time period $=\frac{\text { Total time taken }}{\text { Number of oscillations }}=\frac{32}{20}=1.6 \mathrm{~s}$
Q3. Salma takes 15 minutes from her house to reach her school on a bicycle. If the bicycle has a speed of $2 \mathrm{~m} / \mathrm{s}$, calculate the distance between her house and the school.
Ans. \quad Time taken $=15 \mathrm{~min}=15 \times 60=900$ seconds

$$
\text { Speed }=2 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
\text { Distance } & =\text { Speed } \times \text { Time } \\
& =2 \times 900=1800 \mathrm{~m}=1800 / 1000=1.8 \mathrm{~km}
\end{aligned}
$$

Q4. When pendulum is said to have one complete oscillation?
Ans. The pendulum is said to have completed one oscillation when its bob, starting from its mean position B, moves to A, to C and back to B.

