Name: \qquad Date: \qquad

Motion and Measurement of Distances

Q1. Write the similarity and dissimilarity between motion of a bicycle and a ceiling fan that has been switched on.

Ans. \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q2. How can we measure the length of a curved line?
Ans. \qquad

Motion and Measurement of Distances

Q1. Write the similarity and dissimilarity between motion of a bicycle and a ceiling fan that has been switched on.

Ans.

Similarity	
Bicycle	$\underline{\text { Ceiling fan }}$
1. Wheels have circular motion about their respective fixed point.	1. Blades have circular motion about their respective fixed point.
Dissimilarity	1. Ceiling fan do not have linear /rectilinear motion. It is fixed at one place.
1. Bicycle has linear/rectilinear motion.	

Q2. How can we measure the length of a curved line?
Ans. We can use a thread to measure the length of a curved line.

Steps to measure the length of a curved line

i. Put a knot on the thread near one of its ends and place this knot on the one of its ends.
ii. Now, holding the thread at one end with one hand, place the thread along the curved line, keeping it taut using your fingers and thumb.
iii. Now make a mark on the thread where it reaches the other end.
iv. Finally, place the thread along a metre scale and measure the length between the knot and the marked point. This gives the length of the curved line.

